Synthesis of 2-methoxy-6-oxo-1, 4, 2-diazaphosphorinane-2-oxide, A New Potential Antitumor Phosphorus Heterocycle Compound

Liang XU, Guang Rong ZHENG, Min XIA, Jun Chao CAI*
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031

Abstract

: 2-methoxy-6-oxo-1, 4, 2-diazaphosphorinane-2-oxide 8, phosphorus counterpart of 2, 6dioxopiperazine, was synthesized as antitumor agent. The new phosphorus heterocycle compound $\mathbf{8}$ is the key intermediate in the synthesis of phosphorus counterpart of bisdioxopiperazine.

Keywords: Antitumor activity, phosphorus heterocycle compound, 2,6-dioxopiperazine.

The discoveries that the bisdioxopiperazines ICRF-154 ${ }^{1}$, ICRF-159(razoxane) ${ }^{1}$ and MST-16(sobuzoxan) ${ }^{2}$ are inhibitors of mammalian DNA topoisomerase I^{3-5}, have led to a renewed interest in these compounds as antitumor agents ${ }^{6}$. Among the drugs, MST-16 (sobuzoxan) was approved in Japan (in 1994) as a potent antitumor agent for treatment of adult T-cell leukemia and malignant lymphoma ${ }^{2}$. However, the bisdioxopiperazines exhibited extremely small water-solubility, which reduced its absorption in clinical application. This discrepancy prompt us to synthesize some water-soluble derivatives and analogues. In this study, we synthesized the phosphorus counterpart of dioxopiperazine 2-methoxy-6-oxo-1, 4, 2-diazaphosphorinane-2-oxide $\mathbf{8}$, and we believe that it will be a versatile precursor to synthesize the phosphorus counterpart of bisdioxopiperazine.

Mannich condensation of 1 with formaldehyde and dimethyl phosphite gave N -benzyl- N-dimethylphosphonomethyl ethyl glycinate 2, which upon catalytic hydrogenation with $5 \% \mathrm{Pd}-\mathrm{C}$ afforded glyphosate triester in excellent yield (scheme 1). Protection of the secondary amino group with benzyloxycarbonyl chloride (CbzCl) generated amide 4. Treatment of the carbamate 4 with PCl_{5} in CCl_{4} at $40^{\circ} \mathrm{C}$ for 18 hrs gave monoalkylphosphono- chloride $\mathbf{5}$ which was then used directly to amination with NH_{3} in dry chloroform at $-15^{\circ} \mathrm{C}$ to produce the corresponding phosphonamide 6. Subsequent cyclization of 6 with t - BuOK in $\mathrm{t}-\mathrm{BuOH}$ at room temperature furnished the key intermediate 4-benzyloxycarbonyl-2-methoxy-6-oxo-1,4,2-diazaphosphorinane-2oxide 7. Catalytic hydrogenation of 7 with $10 \% \mathrm{Pd}-\mathrm{C}$ in THF afforded the desired product $\mathbf{8}$ in high yield. The antitumor activity of $\mathbf{7}$ and $\mathbf{8}$ are under evaluation. Chemical
synthesis and biological investigation of phosphorus counterpart of bisdioxopiperazine are in progress.

Scheme 1

a) $\mathrm{CH}_{2} \mathrm{O},\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{POH}, 0^{\circ} \mathrm{C} 15 \mathrm{~min}$ then $100^{\circ} \mathrm{C} 2 \mathrm{~h}, 73 \%$. b) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, 100 \%$. c) $\mathrm{CbzCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CHCl}_{3}$, $0^{\circ} \mathrm{C}, 78 \%$. d) $\mathrm{PCl}_{5}, \mathrm{CCl}_{4}, 40^{\circ} \mathrm{C} 20$ h. e) $\mathrm{NH}_{3}, \mathrm{CHCl}_{3},-15^{\circ} \mathrm{C}, 56 \%$ in two steps. f) t-BuOK/t-BuOH, r.t. $3 \mathrm{~h}, 62 \%$. g) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{THF}, 95 \%$.

Acknowledgment

We thank the State Key Laboratory of Drug Research for financial support.

References and notes

1. A. M. Creighton, K. Hellmann and S. Whitecross, Nature, 1969, 22, 384.
2. J. C. Cai, H. L. Shu, C. F. Tang, Chem. Pharm. Bull, 1989, 37, 2976.
3. K. Tanabe, Y. Ikegami, R. Ishida and T. Andoh, Canaer Res, 1991, 51, 4903.
4. R. Ishida, T. Miki, T. Narita, R. Yui, M. Sato, K. R. Utsumi, K. Tanabe and T. Andoh, Cancer Res, 1991, 5l, 4909.
5. B. B. Hasinoff, T. I. Kuschak, J. C. Yalowich and A. M. Creighton, Biochem Pharmacol, 1995, 50, 953.
6. M. Sehested, P. B. Jensen, B. S. Sorensen, B. Holm, E. Friche and E. J. F. Demant, Biochem Pharmacol, 1993, 46, 389.
7. Data of 8: $\operatorname{IR}(\mathrm{KBr}) 3313,3049,2830,1693,1467,1201,1035,962 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(\mathrm{d}^{6}-\mathrm{DMSO}\right.$, $400 \mathrm{MHz}) \delta_{\mathrm{H}} 3.0(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.8,11.8 \mathrm{~Hz}), 3.4(2 \mathrm{H}, \mathrm{m}), 3.7(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=11 \mathrm{~Hz}), 9.6(1 \mathrm{H}, \mathrm{s}, \mathrm{br})$. ${ }^{31}$ PNMR
$\left(\mathrm{H}_{3} \mathrm{PO}_{4}, 300 \mathrm{MHz}\right) \delta_{\mathrm{P}} 19 \mathrm{ppm}$. EIMS (m / z): $164\left(\mathrm{M}^{+}\right), 124,109,79$. Anal Calcd for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$: C, 29.26; H, 5.48; N, 17.07. found: C, 29.02; H, 5.56; N, 17.23.

Received 27 January 2000

